
SQL SELECT Query: Intermediate

J.G. Zheng

Spring 2012

IT 4153 Advanced Database

Overview

SQL Select
 Expression

 Alias revisit

 Aggregate functions - complete

 Table join - complete

 Sub-query in where

 Limiting results: TOP, DISTINCT

All examples can be used with the
“Northwind” database

2

1. Expression
Expression is a combination of symbols and operators that
returns a single value

An expression can be
 a single constant, variable, column, or scalar function

 10
 3.14
 'John Doe'
 '10/10/2010'
 CompanyName
 GetDate()

 columns, numbers, literals, functions connected by operators
 10*3+3
 'John' + 'Doe'
 Address + ', ' + City + ', ' + ZipCode
 Quantity * SalePrice
 1.2 * ListPrice

3

SQL Operators
Comparison operators
 >, <, >=, <=, <>, !=, =
 LIKE, IN, BETWEEN…AND, IS (NULL)

Logical operators
 AND, OR, NOT

Arithmetic operators
 +, -, *, /, %

Concantenation
 +

T-SQL Reference
 http://msdn.microsoft.com/en-us/library/ms174986.aspx

4

http://msdn.microsoft.com/en-us/library/ms174986.aspx
http://msdn.microsoft.com/en-us/library/ms174986.aspx
http://msdn.microsoft.com/en-us/library/ms174986.aspx

Expressions used as Columns
Expressions can be used as derived columns

Examples

SELECT CompanyName, 'Supplier' as Type FROM Suppliers;

SELECT ProductName, UnitPrice*1.2 AS 'New Price'
FROM Products;

SELECT FirstName+' '+LastName FROM Employees;

SELECT UPPER(ProductName) FROM Products;

SELECT GETDATE();

5

A system function not
related to any table.

A text constant which will be
the same for every record

String concatenation

Expressions used for Comparison

Expressions can be used in the WHERE clause

Examples

SELECT * from Products
WHERE UnitsInStock-ReorderLevel<0;

SELECT * FROM Products
WHERE UnitsInStock + UnitsOnOrder < ReorderLevel;

SELECT ProductName, UnitPrice * 1.1 AS Discount

FROM Products
WHERE UnitPrice * 1.1 >= 20

6

Comparison
between columns

2. Alias
Column alias: representing derived and constant columns

SELECT CategoryID, AVG(UnitPrice) Price
FROM Products
GROUP BY CategoryID
ORDER BY Price;

SELECT ProductName, UnitPrice * 0.9 Discount
FROM Products
WHERE UnitPrice * 0.9 > 20;

Table alias: commonly used in table joins and sub-queries

SELECT ProductName, CategoryName
FROM Products AS p, Categories c
Where p.CategoryID = c.CategoryID

7

“AS” is optional.

Column alias can NOT be
used in WHERE or HAVING
clause (SQL Server)

Column alias can be used in
ORDER BY

If an alias is assigned, it must be used
instead of the original table name

Alias Symbol
Column alias: use [] or ' '

SELECT ProductName, UnitPrice * 0.9 AS 'Discount Price'
FROM Products
ORDER BY 'Discount Price';

SELECT ProductName, UnitPrice * 0.9 AS [Discount Price]
FROM Products
ORDER BY [Discount Price];

Table alias: use []

SELECT ProductName, CategoryName
FROM Products AS [table p], Categories c
Where [table p].CategoryID = c.CategoryID

8

3. Aggregate Functions
Using aggregate functions for row calculation
 MIN (minimum of all or selected values)
 MAX (maximum of all or selected values)
 COUNT (number of all or selected rows)
 AVG (average of all or selected values)
 SUM (sum of all or selected values)

2.1 Calculation for all or selected rows

SELECT COUNT(ProductID) AS NumberOfProducts FROM Products;

SELECT AVG(UnitPrice) AS 'Average Price for Category 1'
FROM Products

WHERE CategoryId = 1;

9

This criterion limits the
records to be averaged.

Expression in Aggregation

Expressions can be used with aggregate
functions

Example

 What is the total payment for each line item?

SELECT SUM(UnitPrice * Quantity) AS LineItemTotal

FROM [Order Details];

10

Grouping

GROUP BY: aggregation with groups
 To get aggregation results for different groups of

records

Example
 What is the average unit price of products in each

category?

SELECT CategoryID, AVG(UnitPrice)

FROM Products

GROUP BY CategoryID;

11

Limitations of GROUP BY

Columns or expressions (except the
aggregate function) can be in the SELECT
clause only if they are in the GROUP BY
clause.

SELECT Country, Region, COUNT(CustomerId)

FROM Customers

GROUP BY Country

12

WRONG! Region is
not in the GROUP BY
clause

Good! Country is in
the GROUP BY clause

Sorting Aggregation Result
You can sort by the aggregation results
 Example: what is the average unit price of products in each

category? Sort by the average unit price

SELECT CategoryID, AVG(UnitPrice) FROM Products
GROUP BY CategoryID
ORDER BY AVG(UnitPrice)

SELECT CategoryID, AVG(UnitPrice) AS Price FROM Products
GROUP BY CategoryID
ORDER BY Price

SELECT CategoryID, AVG(UnitPrice) AS Price FROM Products
GROUP BY CategoryID
ORDER BY 2

13

Using alias.

Using column index

Using aggregate function

Filtering Aggregation Result
Use “HAVING” clause to filter aggregation result (after
aggregation)
 What is the average unit price of products in each category? Only

return those with an average price greater than 10.
 Important: aggregate functions cannot be used in WHERE clause!

SELECT CategoryID, AVG(UnitPrice) FROM Products
GROUP BY CategoryID
Having AVG(UnitPrice) > 10;

Use “WHERE” clause to filter records to be aggregated (before
aggregation)
 What is the average unit price of products whose unit price is

greater than 10?

SELECT CategoryID, AVG(UnitPrice) FROM Products
WHERE UnitPrice > 10
GROUP BY CategoryID;

14

This is wrong:
SELECT CategoryID, AVG(UnitPrice)
FROM Products
WHERE AVG(UnitPrice) > 10
GROUP BY CategoryID

4. Table Join
How do rows match from different tables?
 Cross Join: no need to match.
 Inner Join: use the foreign key constraint as the matching criteria

Inner join (equal join)
 Only include records that have matching records (based on PK/FK pair)

from two tables (either direction)
 Records that do not have matching ones in the other table are not

included in the results.

Outer join (usually needed when minimum cardinality is optional on
a table)
 Left join: include all qualified records from the left table in the join

condition even if they do not have matching records in the right table.
 Right join: include all qualified records from the right table in the join

condition even if they do not have matching records in the left table.
 Full join: include all qualified records from both tables in the join

condition

15

Table Join Effect - Cross Join

16

Product Category

A 1

B 2

Category Name

1 Canned

2 Drink

3 Fresh

Product Category

A Canned

B Drink

Product Category

A Canned

A Drink

A Fresh

B Canned

B Drink

B Fresh Cross Join: no
row matching

Inner Join: row matching
based on foreign key

FK

Join

Table Join Effect - Outer Join

17

Product CategoryId

A 1

B 2

C

CategoryId Name

1 Canned

2 Drink

3 Fresh

Product Category

A Canned

B Drink

Product Category

A Canned

B Drink

C (Null)

Product Category

A Canned

B Drink

(Null) Fresh

Product Category

A Canned

B Drink

C (Null)

(Null) Fresh

Inner join

Left Join

Right Join
Full Join

Equal Join Syntax
What is the category name for each product?

SELECT ProductName, CategoryName
FROM Products, Categories

Where Products.CategoryID = Categories.CategoryID
AND Discontinued = 0;

VS.

SELECT ProductName, CategoryName
FROM Products INNER JOIN Categories ON

Products.CategoryID = Categories.CategoryID
WHERE Discontinued = 0;

18

1. Joining/matching criteria:
very important, don’t
forget!

2. Table.Cloumn format is
used to avoid ambiguity.

Outer Join Example

Get customers and their orders; also
include customers who have never placed
an order

SELECT CompanyName, OrderID

FROM Customers LEFT JOIN Orders ON
Customers.CustomerID = Orders.CustomerID

ORDER BY OrderID

Execution result

19

The first two rows will not be
included for an inner join.

5. Sub-Query

Use the output of a “SELECT” query (sub-query, or
inner query) as an input for another “SELECT”
query

SELECT * FROM Products
WHERE CategoryId =
 (SELECT CategoryId FROM Categories
 WHERE CategoryName = 'Seafood');

SELECT * FROM Products

WHERE CategoryId IN
 (SELECT CategoryId FROM Categories
 WHERE CategoryName IN
('Seafood','Beverages','Produce'));

20

The sub query returns a single
value (scalar value); use “=”

The sub query returns
a list of values; use IN

Sub-Query and Table Join

In the previous cases these statements
can also be re-written as table joins

SELECT * FROM Products, Categories

WHERE Products.CategoryId = Categories.CategoryId

 AND CategoryName = 'Seafood';

SELECT * FROM Products, Categories

WHERE Products.CategoryId = Categories.CategoryId

AND CategoryName IN ('Seafood','Beverages','Produce');

21

Sub-Queries for Comparison

Sub-queries can be used with other
comparison operators >, <, >=, <=, etc.

SELECT * FROM Products

WHERE UnitPrice >
(SELECT AVG(UnitPrice) FROM Products);

In these cases, there is no equivalent table
join format

22

The sub query returns a
single value (scalar value)

TOP
Use the keyword “TOP” to limit the number of rows
returned (SQL Server)

Example

SELECT TOP 10 * FROM Customers;

SELECT TOP 5 PERCENT * FROM Customers;

WITH TIES
 Include records whose value is tied with the last record

SELECT TOP 9 with ties * from Products order by UnitPrice

23

Only returns 10 records.

Returns 10 records as the last
two are the same price.

Only returns 5% of the total
records in the original results.

Uniqueness
Use the keyword “DISTINCT” to eliminate duplicate rows in
the results
 In Oracle, "unique" also works

Example

SELECT DISTINCT Country from Customers
ORDER BY country;

SELECT Count(DISTINCT Country)

FROM Customers

SELECT * FROM Suppliers
 WHERE SupplierId IN
 (SELECT DISTINCT SupplierId from Products WHERE CategoryId = 1)

24

Without DISTINCT, it returns
91 rows; with DISTINCT, it
returns only 21 rows.

DISTINCT can be used with aggregate
functions. Without DISTINCT, the result
is 91; with DISTINCT, the result is 21.

Summary

Key concepts
 Expression
 Alias
 Aggregate function
 Join, cross join, inner join, outer join, left join,

right join, full join
 Sub-query

Key skills
 Write SQL SELECT statement to retrieve desired

data
 Know the result of a given SQL SELECT statement

25

More SQL Query Resources

W3Schools SQL Tutorial
 http://www.w3schools.com/sql/

SQL Course
 http://sqlcourse2.com/

A gentle introduction to SQL
 http://sqlzoo.net/

Other
 http://www.youtube.com/watch?v=Rpp28U_K9Lk
 http://www.1keydata.com/sql

26

http://www.w3schools.com/sql/
http://www.1keydata.com/sql
http://sqlcourse2.com/
http://sqlzoo.net/
http://www.youtube.com/watch?v=Rpp28U_K9Lk
http://www.1keydata.com/sql

